EPIGENÉTICA E SEU PAPEL NO DESENVOLVIMENTO EMBRIONÁRIO - EPIGENETICS AND THE ROLE IN EMBRYONIC DEVELOPMENT

Luis Cesar Nunes Bastos, Daniela Pereira Carvalho, Tatianne Rosa dos Santos

Resumo


A epigenética está envolvida em muitos processos celulares normais. Ela consiste em estudos sobre mudanças hereditárias na expressão gênica que não envolve variação na sequência de DNA. As células de um organismo multicelular são geneticamente idênticas (à exceção de células germinativas e células do sistema imune), mas são funcionalmente heterogêneas.  Células, tecidos e órgãos se diferem porque eles têm certos grupos de genes que estão “ligados” ou expressos, assim como outro grupo de genes que estão “desligados” ou inibidos. No desenvolvimento, modificadores epigenéticos estabilizam a expressão gênica e garantem que padrões de metilação do DNA e modificação de histonas sejam restabelecidos nas células quando há a divisão celular. Apagamento global de marcas epigenéticas ocorre naturalmente em dois estágios do ciclo de vida de mamíferos: quando gametas se fundem para formar o zigoto e quando precursores dos gametas (células germinativas primordiais, PGCs) se desenvolvem e migram no embrião. A compreensão de como a diversidade funcional é gerada, requer uma compreensão de como as diferenças hereditárias na expressão gênica surgem durante o desenvolvimento entre diferentes tipos celulares. Os mecanismos que regem esses processos fazem parte da epigenética porque eles não podem residir unicamente na sequência de DNA, e eles são, por vezes, descritos como sistema de herança epigenética

 

Epigenetic is involved in many of normal cellular processes. It consists of studies heritable changes in gene expression that does not involve sequence variations in DNA. The cells of a multicellular organism are genetically identical (except germ cells and immune cells) but are functionally heterogeneous. Cells, tissues and organs differ because they have certain groups of genes that are "turned on" or expressed, as well as another group of genes that are "turned off" or inhibited. In the development, epigenetic modifiers stabilize gene expression and ensure that DNA methylation and histone modification patterns are restored in cells when there cell division. global epigenetic marks erasing occurs naturally in two stages of the mammalian life cycle, when gametes fuse to form the zygote and as precursors of gametes (primordial germ cells, PGCs) develop and migrate in the embryo. Understanding how the functional diversity is generated, it requires an understanding of how inherited differences in gene expression occur during development between different cell types. The mechanisms that govern these processes are part of epigenetic because they cannot reside solely on DNA sequence, and they are sometimes described as epigenetic inheritance system.


Palavras-chave


marcas epigenéticas, programação, células germinativas, código de histonas

Texto completo:

PDF

Referências


AUCLAIR, G. e WEBER, M. Mechanisms of DNA methylation and demethylation in mammals. Biochimie, 94(11): p. 2202-11, 2012.

BANNISTER, A.J. e KOUZARIDES, T. Regulation of chromatin by histone modifications. Cell Res, 21(3): p. 381-95, 2011.

BESTOR, T.H. The DNA methyltransferases of mammals. Hum Mol Genet, 9(16): p. 2395-402, 2000.

CANTONE, I. e FISHER A.G. Epigenetic programming and reprogramming during development. Nat Struct Mol Biol, 20(3): p. 282-9, 2013.

COMBES, A.N. e WHITELAW, E. Epigenetic reprogramming: enforcer or enabler of developmental fate? Dev Growth Differ, 52(6): p. 483-91, 2010.

CURLEY, J.P e MASHOODH, R. Parent-of-origin and trans-generational germline influences on behavioral development: the interacting roles of mothers fathers, and grandparents. Dev Psychobiol, 52(4): p. 312–330, 2010.

DOVEY, O.M.; FOSTER, C.T.; COWLEY, S.M. Histone deacetylase 1 (HDAC1), but not HDAC2, controls embryonic stem cell differentiation. Proc Natl Acad Sci USA, 107(18): p. 8242-8247, 2010.

FERREIRA, A.R. e FRANCO, M.M. Reprogramação epigenética em gametas e embriões de mamíferos. Rev. Bras. Reprod. Anim., 36(3-9), 2012.

GABAY, O. e SANCHEZ, C. Epigenetics, sirtuins and osteoarthritis, Joint Bone Spine, 79(6), pp.570-573, 2012.

HAIG, D. e GRAHAM, C. Genomic imprinting and the strange case of the insulin-like growth factor II receptor. Cell, 64(6): p. 1045-6, 1991.

HAJKOVA, P.; ANCELIN, K.; WALDMANN, T.; LACOSTE, N.; LANGE, U.C.; CESARI. F.; LEE, C.; ALMOUZNI, G.; SCHNEIDER, R.; SURANI, M.A. Chromatin dynamics during epigenetic reprogramming in the mouse germ line. Nature, 452(7189): p. 877-81, 2008.

HARRIS, M. Reviewer's commentary on 'Transgenerational effects of prenatal exposure to the 1944-45 Dutch famine'. BJOG, 120(5): p. 553-4, 2013.

HAYCOCK, P.C. Fetal alcohol spectrum disorders: the epigenetic perspective. Biol Reprod, 81(4): p. 607-17, 2009.

INBAR-FEIGENBERG, M.; CHOUFANI, S.; BUTCHER, D.T.; ROIFMAN, M.; WEKSBERG, R. Basic concepts of epigenetics. Fertil Steril, 99(3): p. 607-15, 2013.

JIANG, X.; YAN, J.; WEST, A.A.; PERRY, C.A.; MALYSHEVA, O.V.; DEVAPATLA, S.; PRESSMAN, E.; VERMEYLEN, F.; CAUDILL, M.A. Maternal choline intake alters the epigenetic state of fetal cortisol-regulating genes in humans. Faseb J, 26: p. 3563-3574, 2012.

LARSEN, F.; GUNDERSEN, G.; LOPEZ, R.; PRYDZ, H. CpG islands as gene markers in the human genome. Genomics, 13(4): p. 1095-107, 1992.

LI, Y., HE, Y.; QI, L.; JADDOE, V.W.; FESKENS, E.J.; YANG, X.; MA, G.; HU, F.B. Exposure to the Chinese famine in early life and the risk of hyperglycemia and type 2 diabetes in adulthood. Diabetes, 59(10): p. 2400-6, 2010.

MATHERS, J.C. Early nutrition: impact on epigenetics. Forum Nutr, 60: p. 42-8, 2007.

MENDITI, K.B.C. e KANG, H.C. The role of histones proteins in hematological neoplasias, Revista Brasileira de Cancerologia, 53(4): p. 453-460, 2007.

NILSSON, E.E.; ANWAY, M.D.; STANFIELD, J.; SKINNER, M.K. Transgenerational epigenetic effects of the endocrine disruptor vinclozolin on pregnancies and female adult onset disease. Reproduction, 135(5): p. 713-21, 2008.

OHINATA, Y.; OHTA, H.; SHIGETA, M.; YAMANAKA, K.; WAKAYAMA, T.; SAITOU, M. A signaling principle for the specification of the germ cell lineage in mice. Cell, 137(3): p. 571-84, 2009.

OLIVEIRA, N.F.P.; PLANELLO, A.C.; ANDIA, D.C.; PARDO, A.P.S. Metilação de DNA e câncer. Revista Brasileira de Cancerologia, 56(4): p. 493-499, 2010.

PAINTER, R.C.; DE ROOIJ, S.R.; BOSSUYT, P.M.; SIMMERS, T.A.; OSMOND, C.; BARKER, D.J.; BLEKER, O.P.; ROSEBOOM, T.J. Early onset of coronary artery disease after prenatal exposure to the Dutch famine. Am J Clin Nutr, 84(2): p. 322-7; quiz 466-7, 2006.

PARTHUN, M.R. Hat1: the emerging cellular roles of a type B histone acetyltransferase. Oncogene, 26(37): p. 5319-28, 2007.

PERERA, F. e HERBSTMAN, J. Prenatal environmental exposures, epigenetics, and disease. Reproductive Toxicology, 31: p. 363-373, 2011.

PURI, D.; DHAWAN, J.; MISHRA, R.K. The paternal hidden agenda: Epigenetic inheritance through sperm chromatin. Epigenetics, 5(5): p. 386-91, 2010.

RAMÍREZ, A.E.G.; MARTÍNEZ, A.D.; DÍAS-ANZALDÚA, A. La epigenética y los estudios en gemelos en el campo de la psiquiatría. Salud Mental, 31: p. 229-237, 2008.

RAVELLI, A.C.; VAN DER MEULEN, J.H.; OSMOND, C.; BARKER, D.J.; BLEKER, O.P. Obesity at the age of 50 y in men and women exposed to famine prenatally. Am J Clin Nutr, 70(5): p. 811-6, 1999.

REIK, W. E WALTER, J. Genomic imprinting: parental influence on the genome. Nat Rev Genet, 2(1): p. 21-32, 2001.

REIK, W. Stability and flexibility of epigenetic gene regulation in mammalian development. Nature, 447(7143): p. 425-32, 2007.

REIK, W.; DEAN, W.; WALTER, J. Epigenetic reprogramming in mammalian development. Science, 293(5532): p. 1089-93, 2001.

SANTOS, F.; HENDRICH, B.; REIK, W.; DEAN, W. Dynamic reprogramming of DNA methylation in the early mouse embryo. Dev Biol, 241(1): p. 172-82, 2002.

SANTOS, F.; ZAKHARTCHENKO, V.; STOJKOVIC, M.; PETERS, A.; JENUWEIN, T.; WOLF, E.; REIK, W.; DEAN, W. Epigenetic marking correlates with developmental potential in cloned bovine preimplantation embryos. Curr Biol, 13(13): p. 1116-21, 2003.

SASAKI, H. e MATSUI, Y. Epigenetic events in mammalian germ-cell development: reprogramming and beyond. Nat Rev Genet, 9(2): p. 129-40, 2008.

SIMMONS, D. Epigenetic influences and disease. Nature Education, 1(1): p. 6, 2008.

SIMMONSSON, S. e GURDON, J. DNA demethylation is necessary for the epigenetic reprogramming of somatic cell nuclei. Nat Cell Biol, 6(10): p. 984-990, 2004.

SIMS, J.K.; SPEKTOR, T.M.; HOUSTON, S.I.; WU, S.; RICE J.C. Histone Modifications and the Histone Code. [book chapter] Epigenetics. Ed. Jorg Tost. Horizon Scientific Press, 2007.

STEIN, A.D.; KAHN, H.S.; RUNDLE, A.; ZYBERT, P.A.; VAN DER PAL-DE BRUIN, K.; LUMEY, L.H. Anthropometric measures in middle age after exposure to famine during gestation: evidence from the Dutch famine. Am J Clin Nutr, 85(3): p. 869-76, 2007.

SUSSER, E.B.; BROWN, A.; MATTE, T.D. Prenatal factors and adult mental and physical health. Can J Psychiatry, 44(4): p. 326-34, 1999.

WATERLAND, R.A. E MICHELS, K.B. Epigenetic epidemiology of the developmental origins hypothesis. Annu Rev Nutr, 27: p. 363-88, 2007.

WEBER, M.; HELLMANN, I.; STADLER, M.B.; RAMOS, L.; PÄÄBO, S.; REBHAN, M.; SCHÜBELER, D. Distribution, silencing potential and evolutionary impact of promoter DNA methylation in the human genome. Nat Genet, 39(4): p. 457-66, 2007.

XU, M.Q.; SUN, W.S.; LIU, B.X.; FENG, G.Y.; YU L.; YANG, L.; HE, G.; SHAM, P.; SUSSER, E.; ST CLAIR, D.; HE, L. Prenatal malnutrition and adult schizophrenia: further evidence from the 1959-1961 Chinese famine. Schizophr Bull, 35(3): p. 568-76, 2009.

YANG, X.J. e SETO, E. HATs and HDACs: from structure, function and regulation to novel strategies for therapy and prevention. Oncogene, 26(37): p. 5310-8, 2007.


Apontamentos

  • Não há apontamentos.




Multiverso: Revista Eletrônica do Campus Juiz de Fora - IF Sudeste MG, ISSN 2447-8725, Juiz de Fora, Minas Gerais, Brasil.

Licença Creative Commons

Esta obra está licenciada com uma Licença Creative Commons Atribuição 4.0 Internacional.